Evolutionary Approach to Investigations of Cognitive Systems

Vladimir RED’KOa,1 and Anton KOVALb

aScientific Research Institute for System Analysis, Russian Academy of Science, Russia
bNational Nuclear Research University (MEPhI), Russia

Abstract. Evolutionary approach to investigations of cognitive systems is analyzed. Modeling of cognitive evolution (a study of evolution of animal cognitive features) is considered as interesting direction of these investigations. Backgrounds of models of cognitive evolution that are developed in the area of researches “Adaptive behavior” are outlined. Our initial models of cognitive evolution investigations are described. The sketch program for future modeling of cognitive evolution is proposed.

Keywords. Cognitive evolution; modeling; adaptive behavior; animal cognitive abilities

Introduction

Studies of cognitive evolution are related to a profound epistemological problem: why \textit{human} mind is applicable to cognition of \textit{nature}? Modeling of cognitive evolution, we can analyze, why and how did animal and human cognitive features emerge, and how did applicability of human mind to cognition of nature origin. So, this modeling is related to foundation of science, cognitive science and epistemological studies. Fortunately, there is a direction of research “Adaptive Behavior” \cite{1} that is in close relation to the modeling of cognitive evolution. Investigations of adaptive behavior are described shortly below.

The starting point of our discussion is the mentioned epistemological problem. Approaches to analyze this problem by means of investigation of cognitive evolution are described in the next section. Then we outline the area of research “Adaptive Behavior” and models of adaptive behavior that are directly related to cognitive evolution. The sketch program for future modeling of cognitive evolution is also proposed. Models that correspond to initial steps of the sketch program are described. Interdisciplinary relations of modeling of cognitive evolution are characterized.

1. Epistemological Problem

There is the profound epistemological problem: why the \textit{human} thinking is applicable to cognition of the \textit{nature}? To characterize the problem, let us consider physics. The

1 Corresponding Author: Vladimir Red’ko, Scientific Research Institute for System Analysis, Russian Academy of Science, 44/2 Vavilova Street, Moscow, 119333, Russia, E-mail: vgredko@gmail.com.
power of physics is due to effective use of mathematics. However, why mathematical
deductions are applicable to studies of real physical phenomena? Indeed, a
mathematician makes logical inferences, proves theorems, working with abstractions in
his mind, independently from the physical world. Why results of his work are
applicable to the real nature?

Similar questions became challenging problems for scientists and philosophers for
a long time. In the 1780s, Immanuel Kant investigated human thinking and human
cognition [2, 3]. According to Kant, there is a system of categories, concepts, logic
rules, and inference methods which humans use in cognition of nature. This system of
“pure reason” is of *a priori* character; it exists in our minds before any experience. As
the pure reason is of a priori character, our reason prescribes its laws to nature [3]:

“…it seems at first strange, but is not the less certain, to say: the understanding
does not derive its laws (a priori) from, but prescribes them to, nature.”

After appearance of Darwinian theory, the concept of a priori pure reason had to
be revised. Such revision was clearly expressed by Konrad Lorenz [4]. According to
Lorenz, human mind emerged in the course of evolution as a result of numerous
interactions with the external world. Actually, Kant and Lorenz demonstrated that
without analysis of evolutionary origin of human mind, we can’t answer the question of
applicability of the human thinking to cognition of the nature.

In order to analyze evolutionary roots of human mind, we can follow evolutionary
roots of animal and human cognitive abilities. Can we really proceed in this way? Our
answer is: yes, we can. To justify this answer we can use the following analogy.

Let us consider the elementary logic rule that is used by a mathematician in
deductive inferences, namely, *modus ponens*: “if A is present and B is a consequence of
A, then B is present”, or

\[
\frac{A, A \rightarrow B}{B}
\]

(1)

Now let us go from the mathematician to a dog that is subjected to the experiment
of classical conditioning. A neutral conditioned stimulus (CS) precedes a biologically
significant unconditioned stimulus (US). After a number of presentations of the pair
(CS, US), the causal relation CS \rightarrow US is stored in the dog’s memory. Using this
relation at a new presentation of the CS, the dog is able to do the elementary
“inference”:

\[
\frac{\text{CS}, \text{CS} \rightarrow \text{US}}{\text{US}}
\]

(2)

Thus, after the presentation of the CS, the dog expects the US.

Of course, the use of the rule *modus ponens* (purely deductive) by the
mathematician and the inductive “inference” of the dog are obviously different.
However, can we think about evolutionary roots of logical rules that are used in
mathematics? Again our answer is: yes, we certainly can. The logical conclusion of the
mathematician and the inductive “inference” of the dog are similar.

Is there a background for modeling of cognitive evolution? Fortunately, there is the
area of research “Adaptive Behavior” that includes some steps towards modeling of
cognitive evolution. This research field is outlined in the next section.
2. Area of Investigations “Adaptive Behavior”

In the early 1990s, the area of investigations “Adaptive Behavior” was initiated [1]. These researches are focused on designing and investigation of artificial (in the form of a computer program or a robot) “organisms” that are capable of adapting to a variable environment. These organisms are often called “animats” or agents, autonomous agents. The term “animat” originates from two words: animal + robot = animat. The main goal of this field of research is [5]:

“...designing animats, i.e., simulated animals or robots whose rules of behavior are inspired by those of animals. The proximate goal of this approach is to discover architectures or working principles that allow an animal or a robot to exhibit an adaptive behavior and, thus, to survive or fulfill its mission even in a changing environment. The ultimate goal of this approach is to embed human intelligence within an evolutionary perspective and to seek how the highest cognitive abilities of man can be related to the simplest adaptive behaviors of animals.”

This ultimate goal of the animat approach is similar to the goals of modeling of cognitive evolution.

Applications of these research works are artificial intelligence, robotics, and models of adaptive behavior in social and economic systems.

Certain models of cognitive abilities of animals are already investigated in the framework of “Adaptive behavior.” Some such models are characterized below.

- Research of anticipatory behavior, at which animals predict future situations and actively use these predictions for the organization of the behavior, are conducted currently [8].
- Interesting works are devoted to the formalization of rules of decision making. For example, Mark Witkowski [9] proposed a theory of decision making rules that correspond to different levels of biological evolution. These rules take into account an associative memory, conditioned reflexes, and predictions of action results. Schemes of learning and decision making that are based on these rules are developed; certain computer simulations confirm efficiency of proposed rules.
- Tony Prescott [10] analyzed an evolution of neural structures that have the important role at the action selection ensuring adaptive behavior.

Thus, certain models of cognitive features of animal adaptive behavior are designed and investigated already. However, these investigations are preliminary in many aspects. The next section proposes key steps for future modeling of cognitive evolution.

3. Sketch Program for Further Researches of Cognitive Evolution

The sketch program for further research of cognitive evolution consists of following steps.

A) Modeling of adaptive behavior of animats that have several natural needs: food, reproduction, safety.

Such modeling can be simulations of a natural behavior of simple modeled organisms. Modeling in this direction is already initiated (see below).

B) Investigation of the transition from the physical level of information processing in nervous system of animals to the level of generalized “notions”.

...
Such transition can be considered as emergence of the property of “notion” in animal minds. The generalized “notions” are mental analogues of our words, which are not said by animals, but really used by them. For example, a dog obviously has internal notions “friend”, “enemy”, “food”. Usage of notions leads to essential reduction both the needed memory and the time of information processing, therefore it should be evolutionary advantageous.

C) Investigations of processes of generating causal relations in animal memory.

Storing relationships between the cause and the effect and the adequate use of these relationships is one of key properties of active cognition of regularities of the external world by animals. For example, such relationships are generated at the conditioned reflex: an animal remembers the temporal relation between the conditioned stimulus (CS) and the unconditioned stimulus (US). This allows it to predict events in the external world and adequately use these predictions.

The next logically natural step is the transition from memorizing separate causal relations to systems of logic conclusions.

D) Investigations of “logic conclusions” in animal minds.

Actually, at classical conditioning, animals do a “logic conclusion”: \{CS, CS → US\} ⇒ US or “If the conditioned stimulus takes place, and the conditioned stimulus result in the unconditioned one, then the unconditioned stimulus is expected”. We can even state that such conclusions are similar to logical conclusions in mathematical deductions (see above). It is important to understand, how systems of these conclusions operate, to what extent this “animal logic” is similar to our human logic.

The listed items outline steps of possible investigations from simplest forms of adaptive behavior to logical rules that are used at mathematical deductions.

Following these steps, we began corresponding modeling [11]. Simple initial models are described in the next section. It should be underlined that these models are only starting models. More powerful models, corresponding to steps A and B of the sketch program, should be developed on the base of these initial computer simulations.

4. Initial Models

The formal model of the simple agents which have needs of 1) food, 2) reproduction, and 3) safety (Step A) has been designed and analyzed [11]. According to computer simulations, the model demonstrated a natural behavior of agents. Also the important role of reproduction during evolutionary optimization of agent control systems has been revealed.

The model of autonomous agents that have motivations corresponding to these three needs have been designed and analyzed by means of computer simulations. The model demonstrates that motivations ensure fine adaptation of agents to external environment variations. Stable chains of actions are formed at agent leaning. These chains can be considered as simple patterns of behavior. Each action chain corresponds to the satisfaction of a certain need.

Another model [11] demonstrates the formation of several generalized heuristics by the self-learning agent searching food in the two-dimensional cellular environment. These heuristics result in generating chains of actions by the agent. Additionally, the
formation of internal generalized “notions” by the agent (Step B) was observed in this model.

Comparing steps of the sketch program with noted works [6-11], it is possible to conclude that there are some small elements corresponding to each step of the program already. In other words, we can see some small fragments of a picture of cognitive evolution now, but we do not see the whole picture yet. Nevertheless, investigations of cognitive evolution are interesting and important.

5. Conclusion

Thus, approaches to the modeling of cognitive evolution have been proposed and discussed. This modeling is related to foundations of science and to foundations of mathematics. Initial steps towards modeling of cognitive evolution have been already taken in the research area “Adaptive Behavior”. The sketch program for further modeling of cognitive evolution is proposed. The program includes research steps that are aimed for investigations from simple animal cognitive abilities to mathematical deductions.

6. Acknowledgments

This work is partially supported by the Russian Foundation for Basic Research, Grant No. 10-01-00129.

References